SUPERAR LA BRECHA GENERACIONAL
CÓMO PERCIBEN LAS APLICACIONES BANCARIAS LOS BABY BOOMERS Y LA GENERACIÓN Z
DOI:
https://doi.org/10.36674/mythos.v21i1.834Palabras clave:
Baby-boomer, Banca digital, Fintechs, Generación Z, Modelo de aceptación de la tecnología, UTAUT2Resumen
En 2023, el gasto mundial en TI en servicios bancarios y de inversión ascendió a 652.100 millones de dólares, un 8,1% más que en 2022. La banca móvil, que representa más de la mitad de las transacciones, se ha convertido en el canal predominante. A pesar de las importantes inversiones tecnológicas, sigue siendo crucial comprender las razones que subyacen al uso de las apps bancarias, especialmente entre las distintas generaciones. El estudio analiza la percepción de las generaciones "baby boomer" y "Z" sobre la adopción de aplicaciones bancarias. Veinte personas de distintas generaciones participaron en entrevistas cualitativas. Los datos se analizaron mediante la técnica de Análisis de Contenido. Los resultados indican que los usuarios valoran la comodidad de las transacciones basadas en aplicaciones, reduciendo la dependencia de los bancos físicos. La Generación Z prefiere los bancos digitales, mientras que los baby boomers confían en los tradicionales, citando preocupaciones como problemas de conectividad, limitaciones de conocimientos tecnológicos y consideraciones de coste-beneficio. Los individuos de la Generación Z que no utilizan aplicaciones bancarias citan como razones la edad, la madurez, las preocupaciones por la seguridad y la falta de influencia social. El temor a utilizar otras aplicaciones prevalece entre los usuarios baby boomers, haciéndose eco de los temores de los no usuarios, lo que subraya el importante papel del miedo en la toma de decisiones, posiblemente relacionado con el robo de datos digitales y las estafas virtuales.
Citas
Addy, M. N., Addo, E. T., Kwofie, T. E., & Yartey, J. E. (n.d.). Predicting the adoption of e-procurement in construction project delivery in Sub-Saharan Africa: an application of UTAUT2. CONSTRUCTION INNOVATION-ENGLAND. https://doi.org/10.1108/CI-09-2021-0174
Alves-Mazzotti, A. J., & Gewandsznajder, F. (2004). O método nas ciências naturais e sociais: pesquisas quantitativas e qualitativas (2nd ed.). PIONEIRA Thompson Learning.
BACEN. (2021). Fintechs. Banco Central Do Brasil. https://www.bcb.gov.br/estabilidadefinanceira/fintechs
Bardin, L. (2013). L’analyse de contenu. PUF.
Chauhan, S., Akhtar, A., & Gupta, A. (2022). Customer experience in digital banking: a review and future research directions. International Journal of Quality and Service Sciences, 14(2), 311–348. https://doi.org/10.1108/IJQSS-02-2021-0027
Creswell, J. W. (2010). Projeto de Pesquisa: Métodos Qualitativo, Quantitativo e Misto. Artmed.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989a). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 27(3), 319–340. https://doi.org/10.1016/S0305-0483(98)00028-0
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989b). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
FEBRABAN. (2019). Aplicativos de bancos evoluem e ganham novas funções. FEBRABAN Tech. https://febrabantech.febraban.org.br/temas/banco-digital/aplicativos-de-bancos-evoluem-e-ganham-novas-funces
FEBRABAN. (2023). Brasileiro aumenta em 30% suas transações bancárias em 2022, e oito em cada dez operações são digitais. FEBRABAN Tech. https://febrabantech.febraban.org.br/temas/inovacao/brasileiro-aumenta-em-30-suas-transacoes-bancarias-em-2022-e-oito-em-cada-dez-operacoes-sao-digitais
Feliciano, A. D. P., & Frogeri, R. F. (2018). A Dinâmica de Uso dos Aplicativos Móveis Bancários: uma análise sob a perspectiva da população idosa. Revista de Sistemas e Computação, 8(2), 1–14. https://revistas.unifacs.br/index.php/rsc/article/view/5699/3661
Feliciano, A. D. P., Frogeri, R. F., & Prado, L. Á. (2018). A ACEITAÇÃO DOS APLICATIVOS MÓVEIS BANCÁRIOS NO BRASIL: uma análise da utilidade percebida e facilidade de uso. INTERAÇÃO, 20(1), 206–231. https://periodicos.unis.edu.br/index.php/interacao/article/download/175/159/
Gama Junior, F. da C., Frogeri, R. F., Piurcosky, F. P., & Carvalho, E. G. (2024). ACCEPTANCE OF INFORMATION SYSTEMS DURING COVID-19: A COMPARATIVE STUDY BETWEEN FEDERAL AND PRIVATE EDUCATIONAL INSTITUTIONS. Mythos (Interdisciplinary), 21(1), 1–17. https://doi.org/10.36674/mythos.v21i1.825
Gartner. (2023). Gartner Forecasts Worldwide Banking and Investment Services IT Spending to Reach $652 Billion in 2023. Current Economic Uncertainty Driving Organizations to Invest in Agile IT Infrastructure. https://www.gartner.com/en/newsroom/press-releases/2023-06-21-gartner-forecasts-worldwide-banking-and-investment-services-it-spending-to-reach-652-billion-in-2023
Grani, A., & Maranguni, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572–2593. https://doi.org/10.1111/bjet.12864
Hameed, S., & Nigam, A. (2023). Exploring India’s Generation Z perspective on AI enabled internet banking services. Foresight, 25(2), 287–302. https://doi.org/10.1108/FS-10-2021-0213
Holden, R. J., & Karsh, B. T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159–172. https://doi.org/10.1016/j.jbi.2009.07.002
Karim, M. W., Ulfy, M. A., & Huda, M. N. (2020). Determining intention to use smartphone banking application among millennial cohort in Malaysia. International Journal of Management and Sustainability, 9(1), 43–53. https://doi.org/10.18488/journal.11.2020.91.43.53
King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information and Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.003
Kitsios, F., Giatsidis, I., & Kamariotou, M. (2021). Digital transformation and strategy in the banking sector: Evaluating the acceptance rate of e-services. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 204. https://doi.org/10.3390/joitmc7030204
Koenaite, M., Maziriri, E., & Chuchu, T. (2021). Attitudes Towards Utilising Mobile Banking Applications Among Generation Z Consumers in South Africa. Journal of Business and Management Review, 2(6), 417–438. https://doi.org/10.47153/jbmr26.1452021
Kopplin, C. S., Gantert, T. M., & Maier, J. V. (2022). Acceptance of matchmaking tools in coworking spaces: an extended perspective. Review of Managerial Science, 16(6), 1911–1943. https://doi.org/10.1007/s11846-021-00498-1
Lisana, L. (2024). Understanding the key drivers in using mobile payment among Generation Z. Journal of Science and Technology Policy Management, 15(1), 122–141. https://doi.org/10.1108/JSTPM-08-2021-0118
Ma, Q., & Liu, L. (2004). The Technology Acceptance Model: A Meta-Analysis of Empirical Findings. Journal of Organizational and End User Computing (JOEUC), 16(1), 59–72. https://doi.org/10.4018/JOEUC.2004010104
Maria, H. D. S., Frogeri, R. F., Piurcosky, F. P., & Prado, L. Á. (2021). Remotely Piloted Aircraft?: Analysis of the Deployment in Aeronautical Accident Investigation Bureau. Journal of Aerospace Technology and Management (JATM), 13(e0121), 1–21. https://doi.org/10.1590/jatm.v13.1187
Matar, A., & Alkhawaldeh, A. M. (2022). Adoption of electronic cards using Wi-Fi platform services by clients of banking sector during COVID-19 pandemic. International Journal of Engineering Business Management, 14. https://doi.org/10.1177/18479790221112797
Melnyk, V. (2023). Transforming the nature of trust between banks and young clients: from traditional to digital banking. Qualitative Research in Financial Markets. https://doi.org/10.1108/QRFM-08-2022-0129
Minayo, M. C. de S. (2012). Análise qualitativa: teoria, passos e fidedignidade. Ciência & Saúde Coletiva, 17(3), 621–626. https://doi.org/10.1590/S1413-81232012000300007
Myers, M. D. (2013). Qualitative research in business and management. SAGE Publications Ltd.
Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft. Information and Organization, 17(1), 2–26. https://doi.org/10.1016/j.infoandorg.2006.11.001
Rodrigues, L. F., Oliveira, A., & Rodrigues, H. (2023). e-Banking Usage by Generations X, Y, and Z. Application OfEmerging Technologies, 115, 234–246. https://doi.org/10.54941/ahfe1004320
Schomakers, E.-M., Lidynia, C., Vervier, L. S., Valdez, A. C., & Ziefle, M. (2022). Applying an Extended UTAUT2 Model to Explain User Acceptance of Lifestyle and Therapy Mobile Health Apps: Survey Study. JMIR MHealth and UHealth, 10(1). https://doi.org/10.2196/26453
Srivastava, S., Mohta, A., & Shunmugasundaram, V. (2024). Adoption of digital payment FinTech service by Gen Y and Gen Z users: evidence from India. Digital Policy, Regulation and Governance , 26(1), 95–117. https://doi.org/10.1108/DPRG-07-2023-0110
Suo, W. J., Goi, C. L., Goi, M. T., & Sim, A. K. S. (2022). Factors Influencing Behavioural Intention to Adopt the QR-Code Payment: Extending UTAUT2 Model. INTERNATIONAL JOURNAL OF ASIAN BUSINESS AND INFORMATION MANAGEMENT, 13(2). https://doi.org/10.4018/IJABIM.20220701.oa8
Szajna, B. (1996). Empirical Evaluation of the Revised Technology Acceptance Model. Management Science, 42(1), 85–92. https://doi.org/10.1287/MNSC.42.1.85
Turner, M., Kitchenham, B., Brereton, P., Charters, S., & Budgen, D. (2010). Does the technology acceptance model predict actual use? A systematic literature review. Information and Software Technology, 52(5), 463–479. https://doi.org/10.1016/j.infsof.2009.11.005
Urquhart, C. (2012). Grounded Theory for Qualitative Research: A Practical Quide. Sage.
Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425–478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and user of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.1111/j.1365-2729.2006.00163.x
Wewege, L., Lee, J., & C. Thomsett, M. (2020). Disruptions and Digital Banking Trends. Journal of Applied Finance & Banking, 10(6), 15–56. https://www.researchgate.net/profile/Luigi-
Wewege/publication/343050625_Disruptions_and_Digital_Banking_Trends/links/5f136f93a6fdcc3ed7153217/Disruptions-and-Digital-Banking-Trends.pdf
Windasari, N. A., Kusumawati, N., Larasati, N., & Amelia, R. P. (2022). Digital-only banking experience: Insights from gen Y and gen Z. Journal of Innovation and Knowledge, 7(2), 100170. https://doi.org/10.1016/j.jik.2022.100170
Zmoginski, F. (2019). A geração que desafia os bancos. FEBRABAN. https://febrabantech.febraban.org.br/temas/banco-digital/a-geracao-que-desafia-os-bancos
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
A partir de enero de 2024, los autores conservan los derechos de autor de su artículo y conceden a la revista Mythos de FEPESMIG el derecho de primera publicación, estando la obra simultáneamente bajo la licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0), tal y como se recoge en el documento PDF del artículo. Esta licencia establece que el artículo publicado puede ser compartido (permite copiar y redistribuir el material en cualquier medio o formato) y adaptado (permite remezclar, transformar y crear a partir del material para cualquier fin, incluido el comercial) por cualquier persona.