MACHINE LEARNING–DRIVEN PROCESS OPTIMIZATION
A CASE STUDY IN A POULTRY FARM IN SOUTHERN MINAS GERAIS
DOI:
https://doi.org/10.36674/mythos.v17i2.1049Keywords:
Artificial Intelligence, Egg Production, Process, Poultry Farming, Random Forest, Regression Tree M5PAbstract
This paper presents a case study on the application of Machine Learning (ML) in the optimization of egg production, conducted in the context of a poultry farm located in southern Minas Gerais, Brazil. The purpose of this research is to analyze the feasibility of optimizing the farm’s production processes using predictive ML techniques. To achieve this goal, a quantitative methodology was adopted, based on three main stages: collection and preprocessing of the farm’s historical data, development of predictive models using the WEKA software, and evaluation of the algorithms’ performance through statistical metrics such as Mean Absolute Error (MAE) and the correlation coefficient (R). Among the tested models, Random Forest showed the best performance, presenting a high correlation level and the lowest error margin, thus proving to be suitable for operational forecasting. The M5P model stood out for its balance between accuracy and interpretability, while linear regression, although simpler, delivered satisfactory and easily interpretable results. It is believed that the findings of this study may contribute to discussions and reflections on the importance of technology in the efficient management of poultry farming and its impact on small and medium-sized farms in the region, optimizing resource use and increasing sustainability.
References
Adejola, Y. A., Sibanda, T. Z., Ruhnke, I., Boshoff, J., Pokhrel, S., & Welch, M. (2025). Forecasting egg production performance and fluctuations in commercial free-range poultry systems using a random forest model. Smart Agricultural Technology, 12, 101380. https://doi.org/10.1016/j.atech.2025.101380 DOI: https://doi.org/10.1016/j.atech.2025.101380
Ang, K. L.-M., & Seng, J. K. P. (2021). Big Data and Machine Learning With Hyperspectral Information in Agriculture. IEEE Access, 9, 36699–36718. https://doi.org/10.1109/ACCESS.2021.3051196 DOI: https://doi.org/10.1109/ACCESS.2021.3051196
Bain, M. M., Nys, Y., & Dunn, I. C. (2016). Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? British Poultry Science, 57(3), 330–338. https://doi.org/10.1080/00071668.2016.1161727 DOI: https://doi.org/10.1080/00071668.2016.1161727
Berger, Q., Bedere, N., Lagarrigue, S., Burlot, T., Le-Roy, P., Tribout, T., & Zerjal, T. (2025). Unravelling the genetic architecture of persistence in production, quality, and efficiency traits in laying hens at late production stages (p. 2025.02.26.640268). bioRxiv. https://doi.org/10.1101/2025.02.26.640268 DOI: https://doi.org/10.1101/2025.02.26.640268
Brownlee, J. (2016, August 9). How to Work Through a Regression Machine Learning Project in Weka. MachineLearningMastery.Com. https://www.machinelearningmastery.com/regression-machine-learning-tutorial-weka/
Bumanis, N. (2024). Overcoming Data Limitations in Precision Poultry Farming: Processing and Data Fusion Challenges. Procedia Computer Science, 232, 2302–2309. https://doi.org/10.1016/j.procs.2024.02.049 DOI: https://doi.org/10.1016/j.procs.2024.02.049
Cordeiro, A. F., Nääs, I. A., Garcia, R. G., & Valentim, J. K. (2025). Machine Learning-Based Decision Trees to Predict Egg Production Performance in Laying Hens under Heat Stress Conditions. Brazilian Journal of Poultry Science, 27, eRBCA. https://doi.org/10.1590/1806-9061-2025-2130 DOI: https://doi.org/10.1590/1806-9061-2025-2130
Fan, W., Peng, H., & Yang, D. (2025). Review: The application and challenges of advanced detection technologies in poultry farming. Poultry Science, 104(11), 105870. https://doi.org/10.1016/j.psj.2025.105870 DOI: https://doi.org/10.1016/j.psj.2025.105870
Garcia Arismendiz, J. A., & Huertas Zuñiga, S. L. (2024). Improving demand forecasting by implementing machine learning in poultry production company. https://repositorio.ulima.edu.pe/handle/20.500.12724/20750
Ghysels, E., Osborn, D. R., & Rodrigues, P. M. M. (2006). Chapter 13 Forecasting Seasonal Time Series. In Handbook of Economic Forecasting (Vol. 1, pp. 659–711). Elsevier. https://doi.org/10.1016/S1574-0706(05)01013-X DOI: https://doi.org/10.1016/S1574-0706(05)01013-X
Ji, H., Xu, Y., & Teng, G. (2024). Predicting egg production rate and egg weight of broiler breeders based on machine learning and Shapley additive explanations. Poultry Science, 104(1), 104458. https://doi.org/10.1016/j.psj.2024.104458 DOI: https://doi.org/10.1016/j.psj.2024.104458
Kader, M. S., Ahmed, F., & Akter, J. (2021). Machine Learning Techniques to Precaution of Emerging Disease in the Poultry Industry. 2021 24th International Conference on Computer and Information Technology (ICCIT), 1–6. https://doi.org/10.1109/ICCIT54785.2021.9689828 DOI: https://doi.org/10.1109/ICCIT54785.2021.9689828
Khan, S. A., Shukla, A. K., Yadav, S. K., & Vishwakarma, G. K. (2025). Machine learning models for analysis and prediction of optimal egg production. Quality & Quantity. https://doi.org/10.1007/s11135-025-02309-1 DOI: https://doi.org/10.1007/s11135-025-02309-1
Lemke, V., Andrade, J. O., & Komati, K. S. (2024). Machine Learning Techniques for Egg Production Prediction. Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE). https://doi.org/10.55592/cilamce.v6i06.10159 DOI: https://doi.org/10.55592/cilamce.v6i06.10159
Meshram, V., Patil, K., Meshram, V., Hanchate, D., & Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, 100010. https://doi.org/10.1016/j.ailsci.2021.100010 DOI: https://doi.org/10.1016/j.ailsci.2021.100010
Meyer, C. (2023). RegressionAnalysis [Weka.classifiers.evaluation]. Class RegressionAnalysis. https://weka.sourceforge.io/doc.dev/weka/classifiers/evaluation/RegressionAnalysis.html
Milosevic, B., Ciric, S., Lalic, N., Milanovic, V., Savic, Z., Omerovic, I., Doskovic, V., Djordjevic, S., & Andjusic, L. (2019). Machine learning application in growth and health prediction of broiler chickens. World’s Poultry Science Journal, 75(3), 401–410. https://doi.org/10.1017/S0043933919000254 DOI: https://doi.org/10.1017/S0043933919000254
Mo, L., Jiang, M., Fang, X., & Shi, X. (2023). A Novel Hybrid STL-Based Model for Egg Price Forecasting. IEIT 2023, AHSSEH 10, 365–382. https://doi.org/10.2991/978-94-6463-230-9_44 DOI: https://doi.org/10.2991/978-94-6463-230-9_44
Ngom, R. V., Jajere, S. M., Watsop, H. M., & Tanyienow, A. (2025). Relation Between Farm Biosecurity Measures and Poultry Production Performances: A Scoping Review. Veterinary Medicine and Science, 11(e70526), 1–10. https://doi.org/10.1002/vms3.70526 DOI: https://doi.org/10.1002/vms3.70526
Papacharalampous, G. A., & Tyralis, H. (2018). Evaluation of random forests and Prophet for daily streamflow forecasting. Advances in Geosciences, 45, 201–208. https://doi.org/10.5194/adgeo-45-201-2018 DOI: https://doi.org/10.5194/adgeo-45-201-2018
Pelletier, N. (2017). Life cycle assessment of Canadian egg products, with differentiation by hen housing system type. Journal of Cleaner Production, 152, 167–180. https://doi.org/10.1016/j.jclepro.2017.03.050 DOI: https://doi.org/10.1016/j.jclepro.2017.03.050
Reichel, F. (2025). Statistically Significant Linear Regression Coefficients Solely Driven By Outliers In Finite-sample Inference (No. arXiv:2505.10738). arXiv. https://doi.org/10.48550/arXiv.2505.10738 DOI: https://doi.org/10.32388/KSZXTM
Reis, M. P., Ferreira, N. T., Gous, R. M., & Sakomura, N. K. (2023). Update and evaluation of the egg production model in laying hens. Animal, 17, 101015. https://doi.org/10.1016/j.animal.2023.101015 DOI: https://doi.org/10.1016/j.animal.2023.101015
Sanders, N. R., & Graman, G. A. (2009). Quantifying costs of forecast errors: A case study of the warehouse environment. Omega, 37(1), 116–125. https://doi.org/10.1016/j.omega.2006.10.004 DOI: https://doi.org/10.1016/j.omega.2006.10.004
Savastano, S., & Scandizzo, P. L. (2017). Farm Size and Productivity: A “Direct-Inverse-Direct” Relationship. World Bank, Washington, DC. https://doi.org/10.1596/1813-9450-8127 DOI: https://doi.org/10.1596/1813-9450-8127
Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2021). Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access, 9, 4843–4873. https://doi.org/10.1109/ACCESS.2020.3048415 DOI: https://doi.org/10.1109/ACCESS.2020.3048415
Siekkinen, K.-M., Heikkilä, J., Tammiranta, N., & Rosengren, H. (2012). Measuring the costs of biosecurity on poultry farms: A case study in broiler production in Finland. Acta Veterinaria Scandinavica, 54(1), 12. https://doi.org/10.1186/1751-0147-54-12 DOI: https://doi.org/10.1186/1751-0147-54-12
Treboux, J., & Genoud, D. (2018). Improved Machine Learning Methodology for High Precision Agriculture. 2018 Global Internet of Things Summit (GIoTS), 1–6. https://doi.org/10.1109/GIOTS.2018.8534558 DOI: https://doi.org/10.1109/GIOTS.2018.8534558
WEKA. (2012, April 12). M5P. GitLab. https://git.cms.waikato.ac.nz/weka/weka/-/blob/abe22514756dbb7ef425bd7d60058d033f93b69f/dev-3-5-8/weka/classifiers/trees/M5P.java
WEKA. (2023, April 17). Wekadocs · stable-3-8 · WEKA / weka · GitLab. GitLab. https://git.cms.waikato.ac.nz/weka/weka/-/tree/stable-3-8/wekadocs
Wen, C., Yan, W., Zheng, J., Ji, C., Zhang, D., Sun, C., & Yang, N. (2018). Feed efficiency measures and their relationships with production and meat quality traits in slower growing broilers. Poultry Science, 97(7), 2356–2364. https://doi.org/10.3382/ps/pey062 DOI: https://doi.org/10.3382/ps/pey062
Wolla, S. A. (2025). The Market for Eggs: How Prices Are Hatched. https://www.stlouisfed.org/publications/page-one-economics/2025/may/market-for-eggs-how-prices-are-hatched
Wu, Z., Zhang, H., & Fang, C. (2024). Research on machine vision online monitoring system for egg production and quality in cage environment. Poultry Science, 104(1), 104552. https://doi.org/10.1016/j.psj.2024.104552 DOI: https://doi.org/10.1016/j.psj.2024.104552
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Leonardo Romanelli Guimarães, Rodrigo Franklin Frogeri, Ana Amélia Furtado de Oliveira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Since January of 2024, the authors retain the copyright relating to their article and grant the journal Mythos, from FEPESMIG, the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0), as stated in the article’s PDF document. This license provides that the article published can be shared (allows you to copy and redistribute the material in any medium or format) and adapted (allows you to remix, transform, and create from the material for any purpose, even commercial) by anyone.

















